Math 4550 Homework 2 Solutions

$$\mathbb{Z}_{4} = \{0, T, 2, \overline{3}\}$$

To has order 1 Since its the identity

$$T$$
 $T+T=2$
 $T+T+T=3$
 $T+T+T+T=9=0$

$$\frac{7}{3}$$

 $\frac{7}{3}$
 $\frac{7}{3}$

$$(0,6)$$
 $\mathbb{Z}_{5} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$

Thas order 1 since it's the identity element

$$\overline{2}$$
 $2+2=\overline{4}$
 $2+2+2=6=\overline{1}$
 $2+2+2+2=8=3$
 $2+2+2+2+2=\overline{10}=0$
 $\overline{2}$ has order 5

$$3$$

 $3+3=6=1$
 $3+3+3=9=4$
 $3+3+3=7=72=2$
 $3+3+3+3+3=75=75=70$
 $3+3+3+3+3+3=75=70$
 $3+3+3+3+3+3=75=70$

2
$$U_6 = \{1, 5, 5^2, 5^3, 5^4, 5^5\}$$

where $S = e^{\frac{2\pi i}{6}} = e^{\frac{\pi i}{3}i}$.

and $S^6 = I$

Thus order 1 since its the identity element

 $E_1 = E_2 = E_3 = E_3$

92 \$1 1+2 order 3. (p2) = 54 +1 92+1 53 + 1 $(g^2)^3 = g^6 = 1$ 541 So, 33 has 62 \$1 53+1 order Z 86=1 $(9^3)^2 = 9^6 = 1$ 9 has order 6 55 \$1 (g5)=g'=g.g=g#1 941 (gy) = g8 = g6 g2 = g2 + 1 (g5)3=g15=g6g6g3=g3+1

 $(g^4)^3 = g^{12} = g^6 \cdot g^6 = |\cdot| = 1$

So, 34 has order 3

(85)4=820= 666666 = 87 = 1

(62)e= 630=(60)= 12=1

 $(S_2)_2 = S_{5L} = (S_2)_4 \cdot Z = 1 \cdot Z = Z \neq 1$

20, 62

order 6

has

(3)
$$D_6 = \{1, r, r^2, s, sr, sr^2\}$$

Where $r^3 = 1, s^2 = 1, r^k s = sr^{-k} = sr^{3-k}$

I has order I since its the identity

$$S + 1$$

 $S^2 = 1$
 S_0 , s has order 2
order 2

$$Sr^{2} \neq 1$$

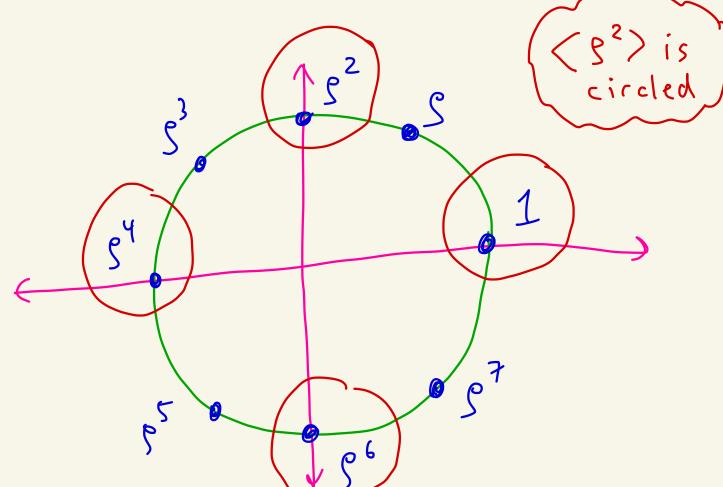
 $(sr^{2})^{2} = Sr^{2}sr^{2} = SSr^{2}r^{2} = S^{2} \cdot 1 = 1 \cdot 1 = 1$
 So, Sr^{2} has order 2

$$U_8 = \{1, 5, 5^2, 5^3, 5^4, 5^5\}$$

Where $S = e^{\frac{2\pi i}{8}} = e^{\frac{\pi}{4}i}$ and $S^8 = 1$.

We want $\langle e^{2\pi i/4} \rangle = \langle S^2 \rangle$

We have
$$\langle g^2 \rangle = \{ 1, g^2, g^4, g^6 \}$$
 $\{ (g^2)^2 = g^8 = 1 \}$



6 IR = IR - 203 is a group under multiplication.

$$\langle 3 \rangle = \{ 3^{k} \mid k \in \mathbb{Z} \}$$

= $\{ ..., 3^{-1}, 3^{-3}, 3^{-3}, 3^{-3}, 3^{-1}, 1, 3, 3^{2}, 3^{3}, 3^{4} \}$
= $\{ ..., \frac{1}{3^{4}}, \frac{1}{3^{3}}, \frac{1}{3^{2}}, \frac{1}{3}, 1, 3, 3^{2}, 3^{3}, 3^{4} \}$

$$det(s) = det(0^{-1}) = 0.0 - (-1)(1) = 1 \neq 0$$

So, $S \in GL(21R)$

$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

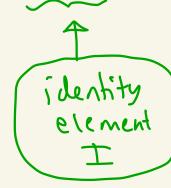
$$S^{2} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$S^{3} = S \cdot S^{2} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$S^{4} = S \cdot S^{3} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

Thus, S has order 4 and

$$\langle 5 \rangle = \{ (10), (0-1), (-10) \}$$



$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

$$T^{3} = T \cdot T^{2} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$$

$$T^{4} = T \cdot T^{3} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$$

The pattern is
$$T^n = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 when $n > 1$.

$$T^{\circ}=T=(!;), S_{\circ}, T^{\circ}=(!;)$$

$$T^{-1} = \frac{1}{\det(T)} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

$$T^{-2} = T^{-1}T^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$$

$$T^{-3} = T'T^{-2} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix}$$

$$T^{-4} = T^{-1} + T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -4 \\ 0 & 1 \end{pmatrix}$$

The pattern is
$$T^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$$
 when $n < 0$.

Thus,
$$\langle T \rangle = \{ ..., \begin{pmatrix} 1-3 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1-2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1-1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 13 \\ 01 \end{pmatrix}, \begin{pmatrix} 13 \\$$

(9)
$$D_c = \{1, r, r^2, s, sr, sr^2\}$$

and $r^3 = 1$, $s^2 = 1$.
Since $r^3 = 1$ We know $r' = r^3 r'' = r^2$

Let $H = \{1, s, sr, sr^2\}$ in D6. We use a table to show that H is not a subgroup of D6.

H	1	S	Sr	SLS
1	1	ک	sr	Sr
5	5	1		
50	37	(2	1	
Sc2	Sc2			1

We can stop filling in the table. We see that $(sr)(s) = srs = ssr^{-1}$ $= 1r^{-1} = r^2 \notin H$

Since H is not closed under the operation, H is not a subgroup of D6.

$$\begin{array}{ll} \hline D_8 = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\} \\ and r'' = 1, s^2 = 1, r^k s = sr^k. \\ Let H = \{1, r^2, s, sr^2\} \\ Let H = \{1, r^2, s, sr^2\} \\ \end{array}$$

We use a table to show that H is a subgroup of D8.

H	1	r ²	S	Sr ²
1	1	12	5	5r ²
Γ ²	Γ ²	1	Sr2	S
5	5	55	1	<u>ر</u>
Sr2	Srz	S	2	1

Example calculations:

$$C^2 = SC^2 = SC^2 = SC^2$$

 $C^2 = SC^2 = SC^2 = SC^2$
 $(SC^2)(SC^2) = SC^2 = SSC^2 = SC^2$
 $(SC^2)(SC^2) = SC^2 = SC^2$
 $= S^2 \cdot 1 = 1$

- 1eH
- 2) It is closed under the group operation by the table
- (3) It is closed under inversion by the table since $(r^2)^{-1} = r^2 \in H$, $s^{-1} = s \in H$, $(sr^2)^{-1} = sr^2 \in H$

By O, Q, B) we have that H & D8

(1) Setting
$$x = 0$$
 gives $(0,1)$
(2) Let $A = (0,1)$ and $B = (0,1)$ be in N
where $a,b \in \mathbb{R}$.

Then,
$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+b \\ 0 & 1 \end{pmatrix}$$

which satisfies at b = R.

SO, ABEN.

So, ABEN.
3 Let
$$C = (1c) \in \mathbb{N}$$
 where $c \in \mathbb{R}$.
Then, $C^{-1} = (1-c) \in \mathbb{N}$ because $-c \in \mathbb{R}$.

By (D, (2), (3) we know N ≥ GL(2, R)

Proof that H = Z:

- ① Setting x=0, y=0 gives $0=2(0)+3(0) \in H$
- 2 Let $\alpha = 2x_1 + 3y_1$ and $b = 2x_2 + 3y_2$ be in H where $x_1, y_1, x_2, y_2 \in \mathbb{Z}$.

Then,

$$a = 2x_1 + 3y_1 + 2x_2 + 3y_2$$

= $2(x_1 + x_2) + 3(y_1 + y_2)$

is in H since x,+X2, y,+y2 ∈ Z.

(3) Let $c = 2x_3 + 3y_3$ be in 4 where $x_3, y_3 \in \mathbb{Z}$.

Then, $-c = 2(-x_3) + 3(-y_3)$ is in H since $-x_3, -y_3 \in \mathbb{Z}$.

By 0, 2, 3) we have $H
eq \mathbb{Z}$.

(13) H= {xeG|x=e} and G is an abelian

Post that Hab:

- (1) e=e gives that e ∈ H.
- (2) Let a, b ∈ H. Then $a^2 = e$ and $b^2 = e$.

Thus,

$$(ab)^2 = (ab)(ab) = abab$$

$$= aabb$$

= ee = e

(3) Let ceH.

Then $c^2 = e$. So, $c^{-2}c^2 = c^{-2}e$

Thus, $C = C^{-2}$.

So, e = (c')2

Thus, c'EH.

By O, 2, 3 we have that H < G.

- (14)
- 1) Since HQG we know eEH. Since KQG we know eEK. Thus, eEHNK.
- 2 Let a, b ∈ HILK.

 So, a ∈ H ∩ K and b ∈ H ∩ K.

 Thus, a ∈ H, a ∈ K, b ∈ H, b ∈ K.

 Thus, a ∈ H, a ∈ K, b ∈ H we know a b ∈ H.

 Since H ⊆ G and a, b ∈ K we know a b ∈ K.

 Since K ⊆ G and a, b ∈ K we know a b ∈ K.

 Thus, a b ∈ H ∩ K.
- 3) Let $c \in H \cap K$.

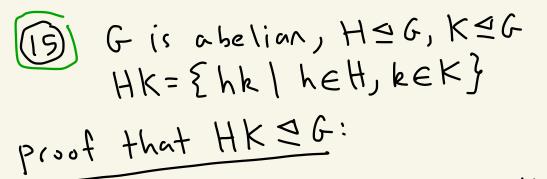
 Then $c \in H$ and $c \in K$.

 Since $H \supseteq G$ and $c \in K$ we know $c' \in K$.

 Since $K \supseteq G$ and $c \in K$ we know $c' \in K$.

 Thus, $c' \in H \cap K$.

By (1), (3), (3) we know that H1/k ≥ G.



- (1) Since H≥G we know e∈H. Since K≥G we know e∈K. Thus, e=ee∈Hk.
- 2) Let $a,b \in HK$. Then $a=h_1k_1$ and $b=h_2k_2$ where $h_1,h_2 \in H$ and $k_1,k_2 \in K$.

We have $ab = h_1k_1h_2k_2 = h_1h_2k_1k_2$

Since G is abelian

Since $h_1, h_2 \in H$ and $H \not= G$ we know $h_1 h_2 \in H$. Since $k_1, k_2 \in K$ and $k \not= G$ we know $k_1 k_2 \in K$. Thus, $ab = (h_1 h_2)(k_1 k_2) \in HK$.

(3) Let $c \in HK$.

Then c = hk where $h \in H$ and $k \in K$.

Since $h \in H$ and $H \supseteq G$ we

Know that $h' \in H$.

Since kek and k= 6 we

Know that k=k. formula from

class

Thus,

c'=(hk)=k-1-1 since G-is
abelian

By O, Q, 3 we know that HK ≥ 6.

(/<u>/</u>)

- (16)
- ① We know that ey = y = ye for all $y \in G$. Thus, $e \in Z(G)$.
- 2) Let a, b \(\pm \) Let a, b \(\pm \) Let all y \(\pm \) Then ay = ya for all y \(\pm \) for all y \(\pm \) and by = yb for all y \(\pm \).

Thus,
$$(ab) y = aby = ayb = yab = y (ab)$$
for all $y \in G$.

So, $ab \in Z(G)$.

(3) Let CE Z(G).

Then, cy=yc for all $y \in G$. So, $c^{-1}(cy)c^{-1}=c^{-1}(yc)c^{-1}$ for all $y \in G$. Thus, $yc^{-1}=c^{-1}y$ for all $y \in G$. Hence $c^{-1} \in Z(G)$.

By O, Q, B we know that Z(6) ≤ G.

